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COMMENT 

Green function for a spin-; particle in an external plane wave 
electromagnetic field 

Arvind N Vaidyat and Marcel0 HottS 
t Instituto de Fisica, Universidade Federal do Ria de Janeiro, Cidade Universitiria, llha 
do Fund&, Cep: 21944, Rio de Janeiro, Brazil 
$ Univenidade Estadual Paulista, Campus de Guaratingueti, Cep: 12500, Guaratinguet-5, 
Si0 Paulo, Brazil 

Received 13 August 1990 

Abstract. The Green function far a spin-+ charged particle in the presence of an external 
plane wave electromagnetic field is calculated by algebraic techniques in terms of the 
free-particle Green function. 

The Green function for a charged particle in the presence of an external plane-wave 
electromagnetic field was calculated by Schwinger [l]. In a recent paper [2] it was 
shown that the spin-0 Green function can be obtained from a different viewpoint. In 
place of formulating the problem using no?-commuting operators Il,, it is possible to 
formulate it using commuting operators IIF which are related to the free-particle 
operators p ,  by a unitary transformation. The explicit calculation of the unitary 
transformation led to the final result giving the Green function in the interacting case 
in terms of the free-particle one. In the present comment we extend our results to the 
spin-f case. 

The external plane-wave field is taken to be 

where 

. $ = n . x  n 2  = 0. (2) 

n‘f ”“ = fl**f@” = 0 (3 )  

Also 

so that 

*fJ; = 0 

f ,*f; = *f*,*f; = 

and we fix the normalization off,. by 

The vector potential A,(x) is chosen to be 

A, , (~)=~, , (~-X’)”X(S,  5‘) 
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where 
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and x‘ is a convenient reference point. 
The Green function for a spin-; charged particle satisfies 

(Fi- m)s(x, x’) = ( id-  eA- m)s(x, x’) = s4(x -XI ) .  

S(x, x‘) = (Fi+ m)S,(x, x’) 

(8) 
Alternatively if we put 

(9) 

then we have to solve 

(10) 
( n - - m 2 + -  e u. F 

sl(x, x’) = sd(x--x‘) 
2 

where 

Putting 

one can replace (10) by 

( i J s + n 2 + u .  F)&(x, x’) = 6(s)s4(x-x’). 

In our earlier paper [2] we proved results appearing in the equations (14)-(20) 
which follow. The ‘momenta’ I?, defined by 

satisfy 

[fi+, fi”] = 0 

fi’ = n2, 

fi, = Up,U-‘ 

and 

Also 

where 
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and 

* Now if we put 

then 

[ i T ” , f i ” ] = O  
and 

One can show that 
fi. = vfpv-’ 

where 

V=exp i e  I A‘::‘F1 
so that 

fi+ = Wp’w-1 (26) 

where 

w =  uv. (27) 

We note that if 

= A:fi” (28) 

then A: formally behaves like a Lorentz transformation. Also 

V-’ y” V = A r y ”  (29) 
! 

and 

V t = y O V - l  Y 0 (30) 

so that V is the SL(2, C) transformation which corresponds to the Lorentz trandforma- 
tion A. Of course both A and V are now field dependent. 

We may use the above results to solve equation (13), immediately getting 

S,(X, x‘) = W(X)S,,(X, x‘) W-’(x’) (31) 

where SI, corresponds to the free-particle case. It may be written explicitly by, using 

It is easy to see that one gets S in the form obtained by Schwinger. 
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One can define a ‘position’ operatoi 

:& = wx, w-’ 

vyvV-1 
which is conjugate to +,,. Defining 

we have that l?, and 

- I  GW” = qi” -:,n,+- [y, 7 1  2 

(33) 

(34) 

(35) 

generate a representation of the Poincart group. 
The use of second-order formalism is not necessary. One can easily verify that 

Fi = wflw-1 (36) 

so that equation (8) may be solved directly. It is, however, dificult to see how one 
can obtain equation (36) without starting from the second-order equation. 

To conclude, we have shown that the technique used in our earlier paper [2] can 
be generalized to the spin-f case. It should be noted, however, that the transformation 
W, in contrast to the earlier case, is a non-unitary Bogoliubov transformation. 

It is interesting to observe that equation (36) and a similar one in the spin-0 case 
allow us to apply Fukikawa’s technique and the path integral formalism to calculate 
the generating functional of Green functions exactly. This will be reported elsewhere. 
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