Green function for a spin-1/2 particle in an external plane wave electromagnetic field

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys. A: Math. Gen. 242437
(http://iopscience.iop.org/0305-4470/24/10/029)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 10:25

Please note that terms and conditions apply.

COMMENT

Green function for a spin $-\frac{1}{2}$ particle in an external plane wave electromagnetic field

Arvind N Vaidya \dagger and Marcelo Hott \ddagger
\dagger Instituto de Física, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Cep: 21944, Rio de Janeiro, Brazil
\ddagger Universidade Estadual Paulista, Campus de Guaratinguetá, Cep: 12500, Guaratinguetá, São Paulo, Brazil

Received 13 August 1990

Abstract

The Green function for a spin- $\frac{1}{2}$ charged particle in the presence of an external plane wave electromagnetic field is calculated by algebraic techniques in terms of the free-particle Green function.

The Green function for a charged particle in the presence of an external plane-wave electromagnetic field was calculated by Schwinger [1]. In a recent paper [2] it was shown that the spin-0 Green function can be obtained from a different viewpoint. In place of formulating the problem using non-commuting operators Π_{μ} it is possible to formulate it using commuting operators $\hat{\Pi}_{\mu}$ which are related to the free-particle operators p_{μ} by a unitary transformation. The explicit calculation of the unitary transformation led to the final result giving the Green function in the interacting case in terms of the free-particle one. In the present comment we extend our results to the spin- $\frac{1}{2}$ case.

The external plane-wave field is taken to be

$$
\begin{equation*}
F_{\mu \nu}(x)=f_{\mu \nu} \frac{\mathrm{d} A}{\mathrm{~d} \xi}=f_{\mu \nu} F(\xi) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi=n \cdot x \quad n^{2}=0 \tag{2}
\end{equation*}
$$

Also

$$
\begin{equation*}
n^{\mu} f_{\mu \nu}=n^{\mu *} f_{\mu \nu}=0 \tag{3}
\end{equation*}
$$

so that

$$
\begin{equation*}
{ }^{*} f_{\mu \lambda} f_{\nu}^{\lambda}=0 \tag{4}
\end{equation*}
$$

and we fix the normalization of $f_{\mu \nu}$ by

$$
\begin{equation*}
f_{\mu \lambda} f_{\nu}^{\lambda}={ }^{*} f_{\mu \lambda} * f_{\nu}^{\lambda}=n_{\mu} n_{\nu} \tag{5}
\end{equation*}
$$

The vector potential $A_{\mu}(x)$ is chosen to be

$$
\begin{equation*}
A_{\mu}(x)=f_{\mu \nu}\left(x-x^{\prime}\right)^{\nu} \chi\left(\xi, \xi^{\prime}\right) \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\chi\left(\xi, \xi^{\prime}\right)=\frac{A(\xi)}{\xi-\xi^{\prime}}-\frac{1}{\left(\xi-\xi^{\prime}\right)^{2}} \int_{\xi^{\prime}}^{\xi} A(\eta) \mathrm{d} \eta \tag{7}
\end{equation*}
$$

and x^{\prime} is a convenient reference point.
The Green function for a spin $-\frac{1}{2}$ charged particle satisfies

$$
\begin{equation*}
(\Pi-m) s\left(x, x^{\prime}\right)=(\mathrm{i} \not \partial-e \not \subset-m) s\left(x, x^{1}\right)=\delta^{4}\left(x-x^{1}\right) . \tag{8}
\end{equation*}
$$

Alternatively if we put

$$
\begin{equation*}
S\left(x, x^{\prime}\right)=(\Pi+m) S_{1}\left(x, x^{\prime}\right) \tag{9}
\end{equation*}
$$

then we have to solve

$$
\begin{equation*}
\left(\Pi^{2}-m^{2}+\frac{e}{2} \sigma \cdot F\right) S_{1}\left(x, x^{\prime}\right)=\delta^{4}\left(x-x^{\prime}\right) \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma \cdot F=\sigma_{\mu \nu} F^{\mu \nu}=\frac{\mathrm{i}}{2}\left[\gamma_{\mu}, \gamma_{\nu}\right] F^{\mu \nu} . \tag{11}
\end{equation*}
$$

Putting

$$
\begin{equation*}
S_{1}\left(x, x^{\prime}\right)=\int_{-\infty}^{+\infty} \exp \left(-\mathrm{i} m^{2} s\right) \Sigma_{s}\left(x, x^{\prime}\right) \mathrm{d} s \tag{12}
\end{equation*}
$$

one can replace (10) by

$$
\begin{equation*}
\left(\mathrm{i} \partial_{s}+\Pi^{2}+\sigma \cdot F\right) \Sigma_{s}\left(x, x^{\prime}\right)=\delta(s) \delta^{4}\left(x-x^{\prime}\right) \tag{13}
\end{equation*}
$$

In our earlier paper [2] we proved results appearing in the equations (14)-(20) which follow. The 'momenta' $\hat{\Pi}_{\mu}$ defined by

$$
\begin{equation*}
\hat{\Pi}_{\mu}=\Pi_{\mu}+\frac{e f_{\mu \nu} \Pi^{\nu} A(\xi)}{n \cdot \Pi}+\frac{e^{2} A^{2}(\xi) n_{\mu}}{2 n \cdot \Pi} \tag{14}
\end{equation*}
$$

satisfy

$$
\begin{equation*}
\left[\hat{\Pi}^{\mu}, \hat{\Pi}^{\nu}\right]=0 \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{\Pi}^{2}=\Pi^{2} \tag{16}
\end{equation*}
$$

Also

$$
\begin{equation*}
\hat{\Pi}_{\mu}=U p_{\mu} U^{-1} \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
U=\exp \left\{-\frac{\mathrm{i} e}{n \cdot p} \Gamma\left(\xi, \xi^{\prime}\right) A \cdot p-\frac{\mathrm{i} e^{2}}{2 n \cdot p} \Omega\left(\xi, \xi^{\prime}\right)\right\} \tag{18}
\end{equation*}
$$

with

$$
\begin{equation*}
\Gamma \chi=A-\left(\xi-\xi^{\prime}\right) \chi \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\Omega\left(\xi, \xi^{\prime}\right)=\int_{\xi^{\prime}}^{\xi} A^{2}(\eta) \mathrm{d} \eta-\frac{1}{\xi-\xi^{\prime}}\left(\int_{\xi^{\prime}}^{\xi} A(\eta) \mathrm{d} \eta\right)^{2} \tag{20}
\end{equation*}
$$

Now if we put

$$
\begin{equation*}
\tilde{\Pi}^{\mu}=\hat{\Pi}^{\mu}+\frac{e}{4} \frac{\sigma \cdot F}{n \cdot \Pi} n^{\mu} \tag{21}
\end{equation*}
$$

then

$$
\begin{equation*}
\left[\tilde{\Pi}^{\mu}, \tilde{\Pi}^{\nu}\right]=0 \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{\Pi}^{2}=\Pi^{2}+\frac{e}{2} \sigma \cdot F . \tag{23}
\end{equation*}
$$

One can show that

$$
\begin{equation*}
\tilde{\Pi}^{\mu}=V \hat{\Pi}^{\mu} V^{-1} \tag{24}
\end{equation*}
$$

where

$$
\begin{equation*}
V=\exp \left\{i e \frac{A(\xi) \sigma \cdot F}{4 n p}\right\} \tag{25}
\end{equation*}
$$

so that

$$
\begin{equation*}
\tilde{\Pi}^{\mu}=W p^{\mu} W^{-1} \tag{26}
\end{equation*}
$$

where

$$
\begin{equation*}
W=U V \tag{27}
\end{equation*}
$$

We note that if

$$
\begin{equation*}
\Pi^{\mu}=\Lambda_{\nu}^{\mu} \hat{\Pi}^{\nu} \tag{28}
\end{equation*}
$$

then Λ_{ν}^{μ} formally behaves like a Lorentz transformation. Also

$$
\begin{equation*}
V^{-1} \gamma^{\mu} V=\Lambda_{\nu}^{\mu} \gamma^{\nu} \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
V^{\dagger}=\gamma^{0} V^{-1} \gamma^{0} \tag{30}
\end{equation*}
$$

so that V is the $\operatorname{SL}(2, \mathrm{C})$ transformation which corresponds to the Lorentz transformation Λ. Of course both Λ and V are now field dependent.

We may use the above results to solve equation (13), immediately getting

$$
\begin{equation*}
S_{1}\left(x, x^{\prime}\right)=W(x) S_{10}\left(x, x^{\prime}\right) W^{-1}\left(x^{\prime}\right) \tag{31}
\end{equation*}
$$

where S_{10} corresponds to the free-particle case. It may be written explicitly by using

$$
\begin{equation*}
\Sigma_{s_{0}}\left(x, x^{\prime}\right)=\frac{\mathrm{i} \theta(s)}{(4 \pi)^{2} s^{2}} \exp \left(-\mathrm{i} \frac{\left(x-x^{\prime}\right)^{2}}{4 s}\right) \tag{32}
\end{equation*}
$$

It is easy to see that one gets S in the form obtained by Schwinger.

One can define a 'position' operator

$$
\begin{equation*}
\tilde{x}_{\mu}=W x_{\mu} W^{-1} \tag{33}
\end{equation*}
$$

which is conjugate to $\tilde{\pi}_{\mu}$. Defining

$$
\begin{equation*}
\tilde{\gamma}^{\mu}=V \gamma^{\mu} V^{-1} \tag{34}
\end{equation*}
$$

we have that $\tilde{\Pi}_{\mu}$ and

$$
\begin{equation*}
\tilde{M}_{\mu \nu}=\tilde{x}_{\mu} \tilde{\Pi}_{\nu}-\tilde{x}_{\nu} \tilde{\Pi}_{\mu}+\frac{\mathrm{i}}{2}\left[\tilde{\gamma}^{\mu}, \tilde{\gamma}^{\nu}\right] \tag{35}
\end{equation*}
$$

generate a representation of the Poincare group.
The use of second-order formalism is not necessary. One can easily verify that

$$
\begin{equation*}
\bar{Z}=W p W^{-1} \tag{36}
\end{equation*}
$$

so that equation (8) may be solved directly. It is, however, difficult to see how one can obtain equation (36) without starting from the second-order equation.

To conclude, we have shown that the technique used in our earlier paper [2] can be generalized to the spin $-\frac{1}{2}$ case. It should be noted, however, that the transformation W, in contrast to the earlier case, is a non-unitary Bogoliubov transformation.

It is interesting to observe that equation (36) and a similar one in the spin-0 case allow us to apply Fukikawa's technique and the path integral formalism to calculate the generating functional of Green functions exactly. This will be reported elsewhere.

Acknowledgments

This research was supported by Conselho National de Desenvolvimento Cientifico e Tecnológico (CNPq) and Financiadora de Estudos e Projetos (FINEP).

References
[1] Schwinger J 1951 Phys. Rev. 82664
[2] Vaidya A N, Farina C and Hott M 1988 J. Phys. A: Math. Gen. 212239
/

